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Excitons in a quantum wire subjected to a magnetic field
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We present variational calculations of the ground-state exciton binding energy and exciton radius in a
quantum wire subjected to an external magnetic field. The magnetic field squeezes the exciton wave
function, causing the binding energy to become very large and increase superlinearly with the field; at
the same time, the exciton radius shrinks. The squeezing is more effective in wider wires, where the exci-
ton wave function is “softer.” These results are consistent with recently reported experimental observa-

tions.

I. INTRODUCTION

There is significant current interest in the exitonic
properties of semiconductor quantum wires because of
their role in optoelectronic applications. This interest
stems from the observation that quantum wires exhibit
large absorption and third-order nonlinear susceptibility
as a result of quantum confinement of excitons. An
external magnetic field further squeezes the exciton wave
function, possibly leading to enhanced optical properties.

Recently, Someya, Akiyama, and Sakaki! reported the
effect of an external magnetic field on the exciton binding
energy and radius in a GaAs quantum wire by measuring
the photoluminescence spectra and comparing them with
those of quantum wells. They found that a magnetic field
squeezes the exciton wave function to a size that is far
below what can be achieved in quantum wells. This is
very promising for potential optoelectronic applications.

In this paper, we present numerical calculations of the
magnetic-field dependence of the exciton binding energy
and the exciton radius in a GaAs quantum wire for
different wire widths. In Sec. II, the theory of an exciton
in a quantum wire subjected to a magnetic field is
developed rigorously within the framework of a two-band
model and perfect confinement of the exciton. Section IIT
presents the result of variational calculations of the bind-
ing energy and exciton radius followed by a discussion of
the excitonic properties. We also compare our results
with the experimental observations of Ref. 1. Since Ref.
1 employed T-shaped edge quantum wires whose
geometries are very different from ours, a direct quantita-
tive comparison is not possible. Nonetheless, we find that
our numerical results are within the same order of magni-
tude as theirs, and that their data are in excellent qualita-
tive agreement with ours. Conclusions are given in Sec.
IV.

II. THEORY

Let us consider a quantum wire where L, <aj is the
dimension along the thickness, L, is the lateral dimension
along the width, and aj is the effective Bohr radius.

A magnetic field is applied along the z direction.
Along that direction, we assume that confinement is com-

0163-1829/95/52(11)/8312(5)/$06.00 52

plete and only one transverse subband is occupied. We
choose the Landau gauge for the magnetic vector poten-
tial

A=(—By,0,0),

where B is the z-directed magnetic flux density. For non-
degenerate and isotropic bands, the Hamiltonian of the
Wannier exciton subjected to a magnetic field is given by
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where m,,, r,, (=a.,x,,ta,y,,) are the effective
masses and positions of electrons and holes, respectively,
€ the dielectric constant, and V¢(y.) and ¥V ¢(y,) are
the confinement potentials for electrons and holes along
the y axis.

For convenience of numerical solution, we transfer to
the center-of-mass and relative coordinate system along
the x axis, but retain “old” coordinates of the electron
and the hole along the y axis. This is accomplished by us-
ing a quantum-mechanical definition of momentum
operators and taking into account that in a center-of-
mass and relative coordinate system
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where

MR=m,r,+m,1, ,
r=r,—r,=a,x+ta,y,

R=a,X+a,Y .
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Simplifying, we obtain
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where Py is the center-of-mass momentum and u and M
are the reduced and weighted total electron-hole masses.
We have tacitly neglected any image force effect.

We will calculate the ground-state exciton binding en-
ergy by a standard variational procedure.?3 To facilitate
calculations, we assume perfect confinement of electrons
and holes along the y axis, such that the y components of
the wave function obey

¢.(y.=—L,/2)=¢,(y,=L,/2)=0,
¢n(yp=—L,/2)=¢,(y,=L,/2)=0 .

Since the Hamiltonian does not depend on X (the coor-
dinate of the center of mass along the wire axis), Py is a
good quantum number. Dropping the term associated
with Py, we take the following trial wave function:
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¢(x)ye’yh)=g:(x’n)¢e(ye )¢h(yh) ’ (3)
where g,(x,7) is chosen to be the Gaussian-type “orbital”
function:*
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in which 7 is a variational parameter, and ¢.(y,) and
¢, (y,) are normalized electron and hole wave functions
along the width to be calculated numerically when a mag-
netic field is present.

It is important to note here that one should separate
two different cases of exciton quantization: as a whole
particle, and as independently confined electron and hole.
According to Ref. 5, the criterion for this separation is
L,=3ag, where the effective Bohr radius aj is that in the
bulk. The trial wave function (3) assumes the electron
and hole to be quantized independently, which corre-
sponds to the case

L,<3a} . )

Minimizing the expectation value of the Hamiltonian
in Eq. (2) (with given trial wave functions) with respect to
the variational parameter 7, one can find exciton binding
energies and radii for different values of magnetic field
and the wire width. The functional to be minimized can
be written as follows:

ﬁZ Ly/2 2 .h2 Ly/Z ' 2
+anf—Ly/z(¢e) dye+mf_Ly/2(¢,,) dy,

/2(¢hyh )ZdJ’h

fLy/Z f+°°
4me Y —L, 29 —L, /2

where the prime denotes a derivative with respect to the y
coordinate and integration of the last (Coulomb) term is
carried out over an infinite interval along the x direction.
To obtain (5), we have used boundary conditions on func-
tions ¢, and ¢,, which allowed us to integrate some of
the terms analytically using integration by parts.

The evaluation of the integrals in the Coulomb term is
not straightforward due to the 1/r singularity. The fact
that the wave function 1 is variable-separable is of no
consequence here, because the Coulomb term couples all
the variables. Moreover, since we use exact wave func-
tions ¢, and ¢, calculated numerically by the method de-
scribed in Ref. 6, we cannot partially integrate this term
analytically to avoid dealing with the singularity. Because
of this, we applied a simple regularization of the
Coulomb term in a way similar to Ref. 7, and made sure
that the result did not depend on the regularization pa-
rameter used. Changing the parameter over five orders of

—o [x2 4+, =y,

dx dy.dy, , (5)

magnitude resulted only in a 10% charge in the binding
energy.

III. RESULTS AND DISCUSSION

We numerically evaluated the remaining integrals in
the expectation value of the functional [see Eq. (5)] and
plotted 4| |4¢) as a function of the variational parame-
ter 7. The minima of (¢|H|¢) give us values of the vari-
ational parameter 7 to be used in computing binding en-
ergies for a particular magnetic-flux density B. Figure 1
shows the dependence of (/|H|¢) on the variational pa-
rameter 7) for two different values of magnetic field and
wire width. One can notice that the functional always
has one well-resolved minimum. The physical parameters
used for the calculations correspond to a GaAs quantum
wire with €=12.9¢;,, m,=0.067m,, and m,=0.5m,,
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FIG. 1. Expectation value of the Hamiltonian as a function
of the variational parameter 7. The left panel corresponds to a
magnetic-flux density of 1 T, the right panel to a flux density of

10T.

where m is the free-electron mass and ¢, the electrical
permittivity of the free space. The wire widths we used
W (=L,) were within the limit of quantization condition

4.

Ground-state exciton binding energies Ep were found

using the relation

Ep=E, |+ Eyy; —min( 1/1|ﬁ|'/1> ,

where E,; and E;; are the lowest electron and the
highest heavy-hole magnetoelectric subband bottom ener-
gies in a quantum wire measured from the bottom of the
bulk conduction band and the top of the bulk valence

band.

In addition to the binding energies, we calculated the
radius (or more correctly the length) of the exciton along

a:W=300A |
b: W=500 A
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FIG. 2. Magnetic-field dependence of the exciton binding en-
ergy in a GaAs quantum wire (upper panel) and exciton radius
(lower panel). The results are shown for different wire widths
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the x axis given analytically as V' (x2)=n/2!"* for
different values of a magnetic field. Figure 2 shows both
the exciton binding energy and the exciton radius as a
function of the magnetic field. The binding energy in-
creases with the magnetic field for all wire widths, which
is in qualitative agreement with the results obtained for

two-dimensional systems, ®°

except that while the in-

crease is sublinear in two-dimensional systems, it is super-

linear in one-dimensional systems.

It is interesting to note that the effect of the magnetic
field is much more pronounced for the wider wire
W =500 A than for the narrower wire W =300 A. This
can be explained in two different ways. A magnetic field
squeezes the electron and hole wave functions along all
directions (see Figs. 3 and 4) causing these states to con-
dense into cyclotron (Landau) orbits whose radii shrink

with increasing magnetic fields.

As long as the wire

width W is smaller than the magnetic length or the
lowest cyclotron radius /(=V'#/eB ), the effect of the
magnetic field is not very pronounced and the geometric
confinement predominates. It is only when W > that
the effect of the magnetic field becomes predominant.
Therefore, a wider wire will show a stronger magnetic-
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FIG. 3. The exciton wave function ¢(0,y,,y,) vs coordinates

YerVn- (a)
magnetic-flux density of 10 T.

At a magnetic flux density of 1 T.

(b) At a
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FIG. 4. The x component of the exciton wave function
8:(x,Mop(B)). The two curves grouped as a correspond to a
magnetic-flux density of 10 T, while those grouped as b corre-
spond to O T. These wave functions are Gaussian-type orbital
functions.

field-induced effect. Another way of explaining the same
wire-width dependence is in terms of the standard time-
independent perturbation picture. The magnetic field per-
turbs the quantum wire states, and the first-order correc-
tion to the wave functions that correspond to the per-
turbed states is given by the formula

¢(1) 2 |H, l

—~ E(O) E(O)

1,0(0)

where E© and ¢ are the unperturbed energy eigenval-
ue and eigenfunction of the mth subband, respectively,
and |H,,,| is the perturbation matrix element due to the
magnetic field. Since in the case of perfect confinement,

po—_THn?_
" 2m,, W
me,h

it is easy to see that the correction decreases with de-
creasing wire width. Since it is this correction that
squeezes the exciton wave function, we see clearly that
the squeezing is more effective in wider wires. In other
words, the wave function is softer and more ‘“‘squeezable”
in wider wires, which causes the magnetic-field-induced
effect to be more dominant in those wires. A very similar
physics causes the hole wave function to be perturbed
more than the electron wave function in a quantum
wire. 1

The exciton radius decreases with magnetic field for all
wire widths and is in the range of 70-140 A. Figure 3
shows the exciton wave function (3) for relative coordi-
nate x =0 for two different values of a magnetic field. To
elucidate the effect of a magnetic field on the exciton ra-
dlus, we considered a relatively wide wire of width 1000
A, so that the squeezing induced by the magnetic field
was large. One can clearly see from these figures that a
magnetic field localizes the exciton wave function at the
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FIG. 5. Comparison of the magnetic-field dependence of the
exciton binding energy in a quantum well and quantum wire of
the same width (13 nm). The quantum-well results are repro-
duced from Ref. 9.

center of the wire. Another interesting thing to note is
that both wave functions are symmetric: a magnetic field
does not skew them toward one or the other edge of the
wire. This is due to the fact that we have used the wave
functions ¢,(y,) and ¢,(y,) of states at the subband ex-
trema. These states have a zero translational velocity and
therefore experience no Lorentz force'® to skew the wave
functions.

The effect of localization can also be observed along
the x direction. Figure 4 shows the x component of the
exciton wave function g,(x,7,,(B)) for two different
wire widths, with and without a magnetic field [7,,, is the
value of n that minimizes the functional in Eq. (5) at a
given magnetic-flux density]. Again, the effect produced
by the field is stronger for the wider wire.

Finally, Fig. 5 provides a direct comparison of the
behavior of the exciton binding energy in a quantum wire
with that in a quantum well of the same width. The
quantum-well data are reproduced from Ref. 9. It is
worth noting that the binding energy of quasi-one-
dimensional excitons lies well above that of two-
dimensional excitons, obviously as a result of the addi-
tional degree of quantum confinement. For the chosen
width of 13 nm, the effect of the magnetic field is not pro-
nounced in the quantum wire since the geometric
confinement is the dominant squeezing agent which com-
pletely overshadows the magnetic-field-induced squeez-
ing. The effect of the magnetic field will of course be more
pronounced in wider wires, where the exciton wave func-
tion is softer and more squeezable.
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IV. CONCLUSION

We found that the ground-state exciton binding energy
in a GaAs quantum wire increases superlinearly with in-

creasing magnetic field. The increase is due to the
compression of the exciton wave function by the field. It
was also found that the effect of a magnetic field is
stronger in wider wires, which has been explained in
terms of the time-independent perturbation theory.
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